Sejarah Singkat Teorema Phytagoras
Pythagoras (569-500 SM) lahir di Pulau Samos di Yunani, dan melakukan banyak perjalanan melalui Mesir, belajar, antara lain, matematika. Tidak banyak yang diketahui dari Phytagoras pada tahun-tahun awal. Pythagoras menjadi terkenal setelah mendirikan sebuah kelompok, “the Brotherhood of Pythagoreans” (Persaudaraan ilmu Pythagoras), yang dikhususkan untuk mempelajari matematika. Kelompok ini sangat dikultuskan sebagai simbol, ritual dan doa. Selain itu, Pythagoras percaya bahwa “Banyak aturan alam semesta,” dan ilmu Pythagoras memberikan nilai numerik untuk banyak obyek dan gagasan. Nilai-nilai numerik, pada gilirannya, dihubungkan dengan nilai mistik dan spiritual.Legenda mengatakan bahwa setelah menyelesaiakan teorema yang terkenal itu, Pythagoras mengorbankan 100 lembu. Meskipun ia sangat diagungkan dengan penemuan teorema yang terkenal itu, namun tidaklah jelas diketahui apakah Pythagoras adalah penulis yang sebenarnya. Para pengkaji dalam kelompok the Brotherhood of Pythagoreans telah menulis banyak bukti geometris, tetapi sulit untuk dipastikan siapa penemu Teorema Phytagoras itu sendiri, sungguh sebuah kelompok yang sangat menjaga rahasia temuan mereka. Sayangnya, sumpah kerahasiaan tersebut bertentangan dengan ide matematika yang penting yang harus diketahui publik. Kelompok the Brotherhood of Pythagoreans telah menemukan bilangan irasional! Jika kita mengambil segitiga siku-siku sama kaki dengan kaki ukuran 1, maka panjang sisi miring adalah sqrt 2. Namun jumlah ini tidak dapat dinyatakan sebagai panjang yang dapat diukur dengan penggaris dibagi menjadi beberapa bagian pecahan, dan ini sangat mengganggu Kelompok Pythagoras, yang terlanjur percaya bahwa “Semua adalah angka.” Mereka menyebutnya angka-angka “alogon,” yang berarti “unutterable.” Akhirnya mereka sangat terkejut dengan angka-angka ini, sehingga mereka dihukum mati seorang anggota yang berani menyebutkan keberadaan mereka kepada publik. Barulah 200 tahun kemudian, yaitu oleh Eudoxus, seorang matematikawan Yunani yang dapat mengembangkan sebuah cara untuk berurusan dengan angka-angka unutterable tersebut.
Tidak ada komentar:
Posting Komentar